Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Practical Tikhonov Regularized Estimators in Reproducing Kernel Hilbert Spaces for Statistical Inverse Problems (1305.1137v1)

Published 6 May 2013 in stat.ME

Abstract: Regularized kernel methods such as support vector machines (SVM) and support vector regression (SVR) constitute a broad and flexible class of methods which are theoretically well investigated and commonly used in nonparametric classification and regression problems. As these methods are based on a Tikhonov regularization which is also common in inverse problems, this article investigates the use of regularized kernel methods for inverse problems in a unifying way. Regularized kernel methods are based on the use of reproducing kernel Hilbert spaces (RKHS) which lead to very good computational properties. It is shown that similar properties remain true in solving statistical inverse problems and that standard software implementations developed for ordinary regression problems can still be used for inverse regression problems. Consistency of these methods and a rate of convergence for the risk is shown under quite weak assumptions and rates of convergence for the estimator are shown under somehow stronger assumptions. The applicability of these methods is demonstrated in a simulation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube