Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal amortized regret in every interval (1304.7577v1)

Published 29 Apr 2013 in cs.LG, cs.DS, and stat.ML

Abstract: Consider the classical problem of predicting the next bit in a sequence of bits. A standard performance measure is {\em regret} (loss in payoff) with respect to a set of experts. For example if we measure performance with respect to two constant experts one that always predicts 0's and another that always predicts 1's it is well known that one can get regret $O(\sqrt T)$ with respect to the best expert by using, say, the weighted majority algorithm. But this algorithm does not provide performance guarantee in any interval. There are other algorithms that ensure regret $O(\sqrt {x \log T})$ in any interval of length $x$. In this paper we show a randomized algorithm that in an amortized sense gets a regret of $O(\sqrt x)$ for any interval when the sequence is partitioned into intervals arbitrarily. We empirically estimated the constant in the $O()$ for $T$ upto 2000 and found it to be small -- around 2.1. We also experimentally evaluate the efficacy of this algorithm in predicting high frequency stock data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rina Panigrahy (34 papers)
  2. Preyas Popat (3 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.