Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction strategies without loss (1008.3672v5)

Published 22 Aug 2010 in cs.DS

Abstract: Consider a sequence of bits where we are trying to predict the next bit from the previous bits. Assume we are allowed to say 'predict 0' or 'predict 1', and our payoff is +1 if the prediction is correct and -1 otherwise. We will say that at each point in time the loss of an algorithm is the number of wrong predictions minus the number of right predictions so far. In this paper we are interested in algorithms that have essentially zero (expected) loss over any string at any point in time and yet have small regret with respect to always predicting 0 or always predicting 1. For a sequence of length $T$ our algorithm has regret $14\epsilon T $ and loss $2\sqrt{T}e{-\epsilon2 T} $ in expectation for all strings. We show that the tradeoff between loss and regret is optimal up to constant factors. Our techniques extend to the general setting of $N$ experts, where the related problem of trading off regret to the best expert for regret to the `special' expert has been studied by Even-Dar et al. (COLT'07). We obtain essentially zero loss with respect to the special expert and optimal loss/regret tradeoff, improving upon the results of Even-Dar et al and settling the main question left open in their paper. The strong loss bounds of the algorithm have some surprising consequences. A simple iterative application of our algorithm gives essentially optimal regret bounds at multiple time scales, bounds with respect to $k$-shifting optima as well as regret bounds with respect to higher norms of the input sequence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Michael Kapralov (55 papers)
  2. Rina Panigrahy (34 papers)
Citations (1)