Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

The harmonic measure of balls in random trees (1304.7190v4)

Published 26 Apr 2013 in math.PR

Abstract: We study properties of the harmonic measure of balls in typical large discrete trees. For a ball of radius $n$ centered at the root, we prove that, although the size of the boundary is of order $n$, most of the harmonic measure is supported on a boundary set of size approximately equal to $n{\beta}$, where $\beta\approx0.78$ is a universal constant. To derive such results, we interpret harmonic measure as the exit distribution of the ball by simple random walk on the tree, and we first deal with the case of critical Galton-Watson trees conditioned to have height greater than $n$. An important ingredient of our approach is the analogous continuous model (related to Aldous' continuum random tree), where the dimension of harmonic measure of a level set of the tree is equal to $\beta$, whereas the dimension of the level set itself is equal to $1$. The constant $\beta$ is expressed in terms of the asymptotic distribution of the conductance of large critical Galton-Watson trees.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.