Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Solving the Conformal Constraints for Scalar Operators in Momentum Space and the Evaluation of Feynman's Master Integrals (1304.6944v2)

Published 25 Apr 2013 in hep-th and hep-ph

Abstract: We investigate the structure of the constraints on three-point correlation functions emerging when conformal invariance is imposed in momentum space and in arbitrary space-time dimensions, presenting a derivation of their solutions for arbitrary scalar operators. We show that the differential equations generated by the requirement of symmetry under special conformal transformations coincide with those satisfied by generalized hypergeometric functions (Appell's functions). Combined with the position space expression of this correlator, whose Fourier transform is given by a family of generalized Feynman (master) integrals, the method allows to derive the expression of such integrals in a completely independent way, bypassing the use of Mellin-Barnes techniques, which have been used in the past. The application of the special conformal constraints generates a new recursion relation for this family of integrals.

Citations (109)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube