Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

ADE subalgebras of the triplet vertex algebra W(p): D_m-series (1304.5711v1)

Published 21 Apr 2013 in math.QA, hep-th, math-ph, math.MP, and math.RT

Abstract: We are continuing our study of ADE-orbifold subalgebras of the triplet vertex algebra W(p). This part deals with the dihedral series. First, subject to a certain constant term identity, we classify all irreducible modules for the vertex algebra $\bar{M(1)} +$, the $\Z_2$--orbifold of the singlet vertex algebra $\bar{M(1)}$. Then we classify irreducible modules and determine Zhu's and $C_2$--algebra for the vertex algebra $\triplet {D_2}$. A general method for construction of twisted $\triplet$--modules is also introduced. We also discuss classification of twisted $\bar{M(1)}$--modules including the twisted Zhu's algebra $A_{\Psi} (\bar{M(1)})$, which is of independent interest. The category of admissible $\Psi$-twisted $\bar{M(1)}$-modules is expected to be semisimple. We also prove $C_2$-cofiniteness of $\triplet{D_m}$ for all $m$, and give a conjectural list of irreducible $\triplet{D_m}$-modules. Finally, we compute characters of the relevant irreducible modules and describe their modular closure.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.