Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Epidemic fronts in complex networks with metapopulation structure (1304.4310v2)

Published 16 Apr 2013 in physics.soc-ph and q-bio.PE

Abstract: Infection dynamics have been studied extensively on complex networks, yielding insight into the effects of heterogeneity in contact patterns on disease spread. Somewhat separately, metapopulations have provided a paradigm for modeling systems with spatially extended and "patchy" organization. In this paper we expand on the use of multitype networks for combining these paradigms, such that simple contagion models can include complexity in the agent interactions and multiscale structure. We first present a generalization of the Volz-Miller mean-field approximation for Susceptible-Infected-Recovered (SIR) dynamics on multitype networks. We then use this technique to study the special case of epidemic fronts propagating on a one-dimensional lattice of interconnected networks - representing a simple chain of coupled population centers - as a necessary first step in understanding how macro-scale disease spread depends on micro-scale topology. Using the formalism of front propagation into unstable states, we derive the effective transport coefficients of the linear spreading: asymptotic speed, characteristic wavelength, and diffusion coefficient for the leading edge of the pulled fronts, and analyze their dependence on the underlying graph structure. We also derive the epidemic threshold for the system and study the front profile for various network configurations. To our knowledge, this is the first such application of front propagation concepts to random network models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.