Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

One-point functions in finite volume/temperature: a case study (1304.3275v2)

Published 11 Apr 2013 in hep-th and cond-mat.stat-mech

Abstract: We consider finite volume (or equivalently, finite temperature) expectation values of local operators in integrable quantum field theories using a combination of numerical and analytical approaches. It is shown that the truncated conformal space approach, when supplemented with a recently proposed renormalization group, can be sufficiently extended to the low-energy regime that it can be matched with high precision by the low-temperature expansion proposed by Leclair and Mussardo. Besides verifying the consistency of the two descriptions, their combination leads to an evaluation of expectation values which is valid to a very high precision for all volume/temperature scales. As a side result of the investigation, we also discuss some unexpected singularities in the framework recently proposed by Pozsgay and Tak\'acs for the description of matrix elements of local operators in finite volume, and show that while some of these singularities are resolved by the inclusion of the class of exponential finite size corrections known as \mu-terms, these latter corrections themselves lead to the appearance of new singularities. We point out that a fully consistent description of finite volume matrix elements is expected to be free of singularities, and therefore a more complete and systematic understanding of exponential finite size corrections is necessary.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.