Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Amplitude-Based Approach to Evidence Accumulation (1304.1129v1)

Published 27 Mar 2013 in cs.AI

Abstract: We point out the need to use probability amplitudes rather than probabilities to model evidence accumulation in decision processes involving real physical sensors. Optical information processing systems are given as typical examples of systems that naturally gather evidence in this manner. We derive a new, amplitude-based generalization of the Hough transform technique used for object recognition in machine vision. We argue that one should use complex Hough accumulators and square their magnitudes to get a proper probabilistic interpretation of the likelihood that an object is present. Finally, we suggest that probability amplitudes may have natural applications in connectionist models, as well as in formulating knowledge-based reasoning problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.