Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Badly approximable points on manifolds (1304.0571v3)

Published 2 Apr 2013 in math.NT

Abstract: This paper is motivated by two problems in the theory of Diophantine approximation, namely, Davenport's problem regarding badly approximable points on submanifolds of a Euclidean space and Schmidt's problem regarding the intersections of the sets of weighted badly approximable points. The problems have been recently settled in dimension two but remain open in higher dimensions. In this paper we develop new techniques that allow us to tackle them in full generality. The techniques rest on lattice points counting and a powerful quantitative result of Bernik, Kleinbock and Margulis. The main theorem of this paper implies that any finite intersection of the sets of weighted badly approximable points on any analytic nondegenerate submanifold of $Rn$ has full dimension. One of the consequences of this result is the existence of transcendental real numbers badly approximable by algebraic numbers of any degree.

Summary

We haven't generated a summary for this paper yet.