Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity (1304.0485v2)
Abstract: The human connectome has been widely studied over the past decade. A principal finding is that it can be decomposed into communities of densely interconnected brain regions. This result, however, may be limited methodologically. Past studies have often used a flawed modularity measure in order to infer the connectome's community structure. Also, these studies relied on the intuition that community structure is best defined in terms of a network's static topology as opposed to a more dynamical definition. In this report we used the partition stability framework, which defines communities in terms of a Markov process (random walk), to infer the connectome's multi-scale community structure. Comparing the community structure to observed resting-state functional connectivity revealed communities across a broad range of dynamical scales that were closely related to functional connectivity. This result suggests a mapping between communities in structural networks, models of communication processes, and brain function. It further suggests that communication in the brain is not limited to a single characteristic scale, leading us to posit a heuristic for scale-selective communication in the cerebral cortex.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.