Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Noncommutative gauge theories on $\mathbb{R}^2_θ$ as matrix models (1303.7185v2)

Published 28 Mar 2013 in hep-th, math-ph, and math.MP

Abstract: We study a class of noncommutative gauge theory models on 2-dimensional Moyal space from the viewpoint of matrix models and explore some related properties. Expanding the action around symmetric vacua generates non local matrix models with polynomial interaction terms. For a particular vacuum, we can invert the kinetic operator which is related to a Jacobi operator. The resulting propagator can be expressed in terms of Chebyschev polynomials of second kind. We show that non vanishing correlations exist at large separations. General considerations on the kinetic operators stemming from the other class of symmetric vacua, indicates that only one class of symmetric vacua should lead to fast decaying propagators. The quantum stability of the vacuum is briefly discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run custom paper prompts using GPT-5 on this paper.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.