Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator (1303.6934v1)

Published 27 Mar 2013 in math.AP and math.NA

Abstract: We analyze a nonlocal diffusion operator having as special cases the fractional Laplacian and fractional differential operators that arise in several applications. In our analysis, a nonlocal vector calculus is exploited to define a weak formulation of the nonlocal problem. We demonstrate that, when sufficient conditions on certain kernel functions hold, the solution of the nonlocal equation converges to the solution of the fractional Laplacian equation on bounded domains as the nonlocal interactions become infinite. We also introduce a continuous Galerkin finite element discretization of the nonlocal weak formulation and we derive a priori error estimates. Through several numerical examples we illustrate the theoretical results and we show that by solving the nonlocal problem it is possible to obtain accurate approximations of the solutions of fractional differential equations circumventing the problem of treating infinite-volume constraints.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.