Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Maximal Blaschke Products (1303.6769v2)

Published 27 Mar 2013 in math.CV

Abstract: We consider the classical problem of maximizing the derivative at a fixed point over the set of all bounded analytic functions in the unit disk with prescribed critical points. We show that the extremal function is essentially unique and always an indestructible Blaschke product. This result extends the Nehari--Schwarz Lemma and leads to a new class of Blaschke products called maximal Blaschke products. We establish a number of properties of maximal Blaschke products, which indicate that maximal Blaschke products constitute an appropriate infinite generalization of the class of finite Blaschke products.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.