Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter identification in large kinetic networks with BioPARKIN (1303.4928v2)

Published 20 Mar 2013 in cs.MS, cs.CE, and q-bio.QM

Abstract: Modelling, parameter identification, and simulation play an important role in systems biology. Usually, the goal is to determine parameter values that minimise the difference between experimental measurement values and model predictions in a least-squares sense. Large-scale biological networks, however, often suffer from missing data for parameter identification. Thus, the least-squares problems are rank-deficient and solutions are not unique. Many common optimisation methods ignore this detail because they do not take into account the structure of the underlying inverse problem. These algorithms simply return a "solution" without additional information on identifiability or uniqueness. This can yield misleading results, especially if parameters are co-regulated and data are noisy.

Citations (11)

Summary

We haven't generated a summary for this paper yet.