How to Measure the Quantum Geometry of Bloch Bands (1303.4643v2)
Abstract: Single-particle states in electronic Bloch bands form a Riemannian manifold whose geometric properties are described by two gauge invariant tensors, one being symmetric the other being antisymmetric, that can be combined into the so-called Fubini-Study metric tensor of the projective Hilbert space. The latter directly controls the Hall conductivity. Here we show that the symmetric part of the Fubini-Study metric tensor also has measurable consequences by demonstrating that it enters the current noise spectrum. In particular, we show that a non-vanishing equilibrium current noise spectrum at zero temperature is unavoidable whenever Wannier states have non-zero minimum spread, the latter being quantifiable by the symmetric part of the Fubini-Study metric tensor. We illustrate our results by three examples: (1) atomic layers of hexagonal boron nitride, (2) graphene, and (3) the surface states of three-dimensional topological insulators when gaped by magnetic dopants.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.