Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

The Nielsen and the Reidemeister numbers of maps on infra-solvmanifolds of type (R) (1303.0784v4)

Published 4 Mar 2013 in math.GR, math.AT, and math.DS

Abstract: We prove the rationality, the functional equations and calculate the radii of convergence of the Nielsen and the Reidemeister zeta functions of continuous maps on infra-solvmanifolds of type $\R$. We find a connection between the Reidemeister and Nielsen zeta functions and the Reidemeister torsions of the corresponding mapping tori. We show that if the Reidemeister zeta function is defined for a homeomorphism on an infra-solvmanifold of type $\R$, then this manifold is an infra-nilmanifold. We also prove that a map on an infra-solvmanifold of type $\R$ induced by an affine map minimizes the topological entropy in its homotopy class and it has a rational Artin-Mazur zeta function. Finally we prove the Gauss congruences for the Reidemeister and Nielsen numbers of any map on an infra-solvmanifolds of type $\R$ whenever all the Reidemeister numbers of iterates of the map are finite. Our main technical tool is the averaging formulas for the Lefschetz, the Nielsen and the Reidemeister numbers on infra-solvmanifolds of type $\R$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.