Orderability, contact non-squeezing, and Rabinowitz Floer homology (1302.6576v2)
Abstract: We study Liouville fillable contact manifolds $(\Sigma,\xi)$ with non-zero Rabinowitz Floer homology and assign spectral numbers to paths of contactomorphisms. As a consequence we prove that $\widetilde{\mathrm{Cont}_0}(\Sigma,\xi)$ is orderable in the sense of Eliashberg and Polterovich. This provides a new class of orderable contact manifolds. If the contact manifold is in addition periodic or a prequantization space $M \times S1$ for $M$ a Liouville manifold, then we construct a contact capacity. This can be used to prove a general non-squeezing result, which amongst other examples in particular recovers the beautiful non-squeezing results from [EKP06].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.