Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequences with Minimal Time-Frequency Uncertainty (1302.2082v3)

Published 8 Feb 2013 in cs.IT and math.IT

Abstract: A central problem in signal processing and communications is to design signals that are compact both in time and frequency. Heisenberg's uncertainty principle states that a given function cannot be arbitrarily compact both in time and frequency, defining an "uncertainty" lower bound. Taking the variance as a measure of localization in time and frequency, Gaussian functions reach this bound for continuous-time signals. For sequences, however, this is not true; it is known that Heisenberg's bound is generally unachievable. For a chosen frequency variance, we formulate the search for "maximally compact sequences" as an exactly and efficiently solved convex optimization problem, thus providing a sharp uncertainty principle for sequences. Interestingly, the optimization formulation also reveals that maximally compact sequences are derived from Mathieu's harmonic cosine function of order zero. We further provide rational asymptotic expansions of this sharp uncertainty bound. We use the derived bounds as a benchmark to compare the compactness of well-known window functions with that of the optimal Mathieu's functions.

Citations (30)

Summary

We haven't generated a summary for this paper yet.