Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward An Uncertainty Principle For Weighted Graphs (1503.03291v2)

Published 11 Mar 2015 in cs.DM

Abstract: The uncertainty principle states that a signal cannot be localized both in time and frequency. With the aim of extending this result to signals on graphs, Agaskar&Lu introduce notions of graph and spectral spreads. They show that a graph uncertainty principle holds for some families of unweighted graphs. This principle states that a signal cannot be simultaneously localized both in graph and spectral domains. In this paper, we aim to extend their work to weighted graphs. We show that a naive extension of their definitions leads to inconsistent results such as discontinuity of the graph spread when regarded as a function of the graph structure. To circumvent this problem, we propose another definition of graph spread that relies on an inverse similarity matrix. We also discuss the choice of the distance function that appears in this definition. Finally, we compute and plot uncertainty curves for families of weighted graphs.

Citations (28)

Summary

We haven't generated a summary for this paper yet.