Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Sparse Channel Estimation for Time-Variant MIMO-OFDM Systems (1302.1351v1)

Published 6 Feb 2013 in cs.IT and math.IT

Abstract: Accurate channel state information (CSI) is required for coherent detection in time-variant multiple-input multipleoutput (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) modulation. One of low-complexity and stable adaptive channel estimation (ACE) approaches is the normalized least mean square (NLMS)-based ACE. However, it cannot exploit the inherent sparsity of MIMO channel which is characterized by a few dominant channel taps. In this paper, we propose two adaptive sparse channel estimation (ASCE) methods to take advantage of such sparse structure information for time-variant MIMO-OFDM systems. Unlike traditional NLMS-based method, two proposed methods are implemented by introducing sparse penalties to the cost function of NLMS algorithm. Computer simulations confirm obvious performance advantages of the proposed ASCEs over the traditional ACE.

Citations (12)

Summary

We haven't generated a summary for this paper yet.