Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Adaptive Sparse Channel Estimation Using Re-Weighted L1-norm Normalized Least Mean Fourth Algorithm (1501.07648v1)

Published 30 Jan 2015 in cs.IT, cs.SY, and math.IT

Abstract: In next-generation wireless communications systems, accurate sparse channel estimation (SCE) is required for coherent detection. This paper studies SCE in terms of adaptive filtering theory, which is often termed as adaptive channel estimation (ACE). Theoretically, estimation accuracy could be improved by either exploiting sparsity or adopting suitable error criterion. It motivates us to develop effective adaptive sparse channel estimation (ASCE) methods to improve estimation performance. In our previous research, two ASCE methods have been proposed by combining forth-order error criterion based normalized least mean fourth (NLMF) and L1-norm penalized functions, i.e., zero-attracting NLMF (ZA-NLMF) algorithm and reweighted ZA-NLMF (RZA-NLMF) algorithm. Motivated by compressive sensing theory, an improved ASCE method is proposed by using reweighted L1-norm NLMF (RL1-NLMF) algorithm where RL1 can exploit more sparsity information than ZA and RZA. Specifically, we construct the cost function of RL1-NLMF and hereafter derive its update equation. In addition, intuitive figure is also given to verify that RL1 is more efficient than conventional two sparsity constraints. Finally, simulation results are provided to confirm this study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.