Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptation in a stochastic multi-resources chemostat model (1302.0552v1)

Published 3 Feb 2013 in math.PR, math.DS, and q-bio.PE

Abstract: We are interested in modeling the Darwinian evolution resulting from the interplay of phenotypic variation and natural selection through ecological interactions, in the specific scales of the biological framework of adaptive dynamics. Adaptive dynamics so far has been put on a rigorous footing only for direct competition models (Lotka-Volterra models) involving a competition kernel which describes the competition pressure from one individual to another one. We extend this to a multi-resources chemostat model, where the competition between individuals results from the sharing of several resources which have their own dynamics. Starting from a stochastic birth and death process model, we prove that, when advantageous mutations are rare, the population behaves on the mutational time scale as a jump process moving between equilibrium states (the polymorphic evolution sequence of the adaptive dynamics literature). An essential technical ingredient is the study of the long time behavior of a chemostat multi-resources dynamical system. In the small mutational steps limit this process in turn gives rise to a differential equation in phenotype space called canonical equation of adaptive dynamics. From this canonical equation and still assuming small mutation steps, we prove a rigorous characterization of the evolutionary branching points.

Summary

We haven't generated a summary for this paper yet.