Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From stochastic, individual-based models to the canonical equation of adaptive dynamics - In one step (1505.02421v2)

Published 10 May 2015 in math.PR and q-bio.PE

Abstract: We consider a model for Darwinian evolution in an asexual population with a large but non-constant populations size characterized by a natural birth rate, a logistic death rate modelling competition and a probability of mutation at each birth event. In the present paper, we study the long-term behavior of the system in the limit of large population $(K\to \infty)$ size, rare mutations $(u\to 0)$, and small mutational effects $(\sigma\to 0)$, proving convergence to the canonical equation of adaptive dynamics (CEAD). In contrast to earlier works, e.g. by Champagnat and M\'el\'eard, we take the three limits simultaneously, i.e. $u=u_K$ and $\sigma=\sigma_K$, tend to zero with $K$, subject to conditions that ensure that the time-scale of birth and death events remains separated from that of successful mutational events. This slows down the dynamics of the microscopic system and leads to serious technical difficulties that requires the use of completely different methods. In particular, we cannot use the law of large numbers on the diverging time needed for fixation to approximate the stochastic system with the corresponding deterministic one. To solve this problem we develop a "stochastic Euler scheme" based on coupling arguments that allows to control the time evolution of the stochastic system over time-scales that diverge with $K$.

Summary

We haven't generated a summary for this paper yet.