Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Entropy Estimation for Countable Discrete Distributions (1302.0328v3)

Published 2 Feb 2013 in cs.IT and math.IT

Abstract: We consider the problem of estimating Shannon's entropy $H$ from discrete data, in cases where the number of possible symbols is unknown or even countably infinite. The Pitman-Yor process, a generalization of Dirichlet process, provides a tractable prior distribution over the space of countably infinite discrete distributions, and has found major applications in Bayesian non-parametric statistics and machine learning. Here we show that it also provides a natural family of priors for Bayesian entropy estimation, due to the fact that moments of the induced posterior distribution over $H$ can be computed analytically. We derive formulas for the posterior mean (Bayes' least squares estimate) and variance under Dirichlet and Pitman-Yor process priors. Moreover, we show that a fixed Dirichlet or Pitman-Yor process prior implies a narrow prior distribution over $H$, meaning the prior strongly determines the entropy estimate in the under-sampled regime. We derive a family of continuous mixing measures such that the resulting mixture of Pitman-Yor processes produces an approximately flat prior over $H$. We show that the resulting Pitman-Yor Mixture (PYM) entropy estimator is consistent for a large class of distributions. We explore the theoretical properties of the resulting estimator, and show that it performs well both in simulation and in application to real data.

Citations (81)

Summary

We haven't generated a summary for this paper yet.