Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does Dirichlet Prior Smoothing Solve the Shannon Entropy Estimation Problem? (1502.00327v3)

Published 1 Feb 2015 in cs.IT and math.IT

Abstract: The Dirichlet prior is widely used in estimating discrete distributions and functionals of discrete distributions. In terms of Shannon entropy estimation, one approach is to plug-in the Dirichlet prior smoothed distribution into the entropy functional, while the other one is to calculate the Bayes estimator for entropy under the Dirichlet prior for squared error, which is the conditional expectation. We show that in general they do \emph{not} improve over the maximum likelihood estimator, which plugs-in the empirical distribution into the entropy functional. No matter how we tune the parameters in the Dirichlet prior, this approach cannot achieve the minimax rates in entropy estimation, as recently characterized by Jiao, Venkat, Han, and Weissman, and Wu and Yang. The performance of the minimax rate-optimal estimator with $n$ samples is essentially \emph{at least} as good as that of the Dirichlet smoothed entropy estimators with $n\ln n$ samples. We harness the theory of approximation using positive linear operators for analyzing the bias of plug-in estimators for general functionals under arbitrary statistical models, thereby further consolidating the interplay between these two fields, which was thoroughly developed and exploited by Jiao, Venkat, Han, and Weissman. We establish new results in approximation theory, and apply them to analyze the bias of the Dirichlet prior smoothed plug-in entropy estimator. This interplay between bias analysis and approximation theory is of relevance and consequence far beyond the specific problem setting in this paper.

Citations (19)

Summary

We haven't generated a summary for this paper yet.