Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Likelihood to Plausibility (1301.7402v1)

Published 30 Jan 2013 in cs.AI

Abstract: Several authors have explained that the likelihood ratio measures the strength of the evidence represented by observations in statistical problems. This idea works fine when the goal is to evaluate the strength of the available evidence for a simple hypothesis versus another simple hypothesis. However, the applicability of this idea is limited to simple hypotheses because the likelihood function is primarily defined on points (simple hypotheses) of the parameter space. In this paper we define a general weight of evidence that is applicable to both simple and composite hypotheses. It is based on the Dempster-Shafer concept of plausibility and is shown to be a generalization of the likelihood ratio. Functional models are of a fundamental importance for the general weight of evidence proposed in this paper. The relevant concepts and ideas are explained by means of a familiar urn problem and the general analysis of a real-world medical problem is presented.

Summary

We haven't generated a summary for this paper yet.