Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Measure Evidence and Its Strength: Bayes Factors or Relative Belief Ratios? (2301.08994v2)

Published 21 Jan 2023 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: Both the Bayes factor and the relative belief ratio satisfy the principle of evidence and so can be seen to be valid measures of statistical evidence. Certainly Bayes factors are regularly employed. The question then is: which of these measures of evidence is more appropriate? It is argued here that there are questions concerning the validity of a current commonly used definition of the Bayes factor based on a mixture prior and, when all is considered, the relative belief ratio has better properties as a measure of evidence. It is further shown that, when a natural restriction on the mixture prior is imposed, the Bayes factor equals the relative belief ratio obtained without using the mixture prior. Even with this restriction, this still leaves open the question of how the strength of evidence is to be measured. It is argued here that the current practice of using the size of the Bayes factor to measure strength is not correct and a solution to this issue is presented. Several general criticisms of these measures of evidence are also discussed and addressed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets