Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Further refinements of the Heinz inequality (1301.7346v1)

Published 30 Jan 2013 in math.FA and math.OA

Abstract: The celebrated Heinz inequality asserts that $ 2|||A{1/2}XB{1/2}|||\leq |||A{\nu}XB{1-\nu}+A{1-\nu}XB{\nu}|||\leq |||AX+XB|||$ for $X \in \mathbb{B}(\mathscr{H})$, $A,B\in +$, every unitarily invariant norm $|||\cdot|||$ and $\nu \in [0,1]$. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function $F(\nu)=|||A{\nu}XB{1-\nu}+A{1-\nu}XB{\nu}|||$, some integration techniques and various refinements of the Hermite--Hadamard inequality. In the setting of matrices we prove that \begin{eqnarray*} &&\hspace{-0.5cm}\left|\left|\left|A{\frac{\alpha+\beta}{2}}XB{1-\frac{\alpha+\beta}{2}}+A{1-\frac{\alpha+\beta}{2}}XB{\frac{\alpha+\beta}{2}}\right|\right|\right|\leq\frac{1}{|\beta-\alpha|} \left|\left|\left|\int_{\alpha}{\beta}\left(A{\nu}XB{1-\nu}+A{1-\nu}XB{\nu}\right)d\nu\right|\right|\right|\nonumber\ &&\qquad\qquad\leq \frac{1}{2}\left|\left|\left|A{\alpha}XB{1-\alpha}+A{1-\alpha}XB{\alpha}+A{\beta}XB{1-\beta}+A{1-\beta}XB{\beta}\right|\right|\right|\,, \end{eqnarray*} for real numbers $\alpha, \beta$.

Summary

We haven't generated a summary for this paper yet.