2000 character limit reached
Refinements of a reversed AM-GM operator inequality (1506.06414v1)
Published 21 Jun 2015 in math.FA and math.OA
Abstract: We prove some refinements of a reverse AM-GM operator inequality due to M. Lin [Studia Math. 2013;215:187-194]. In particular, we show the operator inequality \begin{eqnarray*} \Phip\left(A\nabla_\nu B+2rMm(A{-1}\nabla B{-1}-A{-1}\sharp B{-1})\right)\leq\alphap\Phip\left(A\sharp_\nu B\right), \end{eqnarray*} where $A,B$ are positive operators on a Hilbert space such that $0<m \leq A, B \leq M$ for some positive numbers $m, M$, $\Phi$ is a positive unital linear map, $\nu\in[0,1]$, $r=\min\{\nu,1-\nu\}$, $p\>0$ and $\alpha=\max\left{\frac{(M+m)2}{4Mm},\frac{(M+m)2}{4\frac{2}{p}Mm}\right}$.