Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Random matrix minor processes related to percolation theory (1301.7017v4)

Published 29 Jan 2013 in math.PR, math-ph, math.CA, and math.MP

Abstract: This paper studies a number of matrix models of size n and the associated Markov chains for the eigenvalues of the models for consecutive n's. They are consecutive principal minors for two of the models, GUE with external source and the multiple Laguerre matrix model, and merely properly defined consecutive matrices for the third one, the Jacobi-Pineiro model; nevertheless the eigenvalues of the consecutive models all interlace. We show: (i) For each of those finite models, we give the transition probability of the associated Markov chain and the joint distribution of the entire interlacing set of eigenvalues; we show this is a determinantal point process whose extended kernels share many common features. (ii) To each of these models and their set of eigenvalues, we associate a last-passage percolation model, either finite percolation or percolation along an infinite strip of finite width, yielding a precise relationship between the last passage times and the eigenvalues. (iii) Finally it is shown that for appropriate choices of exponential distribution on the percolation, with very small means, the rescaled last passage times lead to the Pearcey process; this should connect the Pearcey statistics with random directed polymers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.