Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cellular Tree Classifiers (1301.4679v2)

Published 20 Jan 2013 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: The cellular tree classifier model addresses a fundamental problem in the design of classifiers for a parallel or distributed computing world: Given a data set, is it sufficient to apply a majority rule for classification, or shall one split the data into two or more parts and send each part to a potentially different computer (or cell) for further processing? At first sight, it seems impossible to define with this paradigm a consistent classifier as no cell knows the "original data size", $n$. However, we show that this is not so by exhibiting two different consistent classifiers. The consistency is universal but is only shown for distributions with nonatomic marginals.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube