Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Results for a Class of Arithmetic Functions: a variant of H. L. Montgomery and R. C. Vaughan's method (1301.4530v1)

Published 19 Jan 2013 in math.NT

Abstract: Let $a, b,c $ and $k$ be positive integers such that $1\leq a\leq b,a<c\<2(a+b), c\ne b$ and $(a,b,c)=1$. Define the arithmetic function $f_k(a,b;c;n)$ by $$ \sum_{n=1}^{\infty}\frac{f_k(a,b;c;n)}{n^s}=\frac{\zeta (as)\zeta (bs)}{\zeta^k(cs)}, \Re s \>1.$$ Let $\Delta_k(a,b;c;x)$ denote the error term of the summatory function of the function $f_k(a,b;c;n).$ IN this paper we shall give two expressions of $\Delta_k(a,b;c;x)$. As applications, we study the so-called $(l,r)$-integers, the generalized square-full integers, the $e-r$-free integers, the divisor problem over $r$-free integers, the $e$-square-free integers. An important tool is a generalization of a method of H. L. Montgomery and R. C. Vaughan.

Summary

We haven't generated a summary for this paper yet.