2000 character limit reached
Jeśmanowicz' conjecture and Fermat numbers (1304.0514v2)
Published 2 Apr 2013 in math.NT
Abstract: Let $a,b,c$ be relatively prime positive integers such that $a{2}+b{2}=c{2}.$ In 1956, Je\'{s}manowicz conjectured that for any positive integer $n$, the only solution of $(an){x}+(bn){y}=(cn){z}$ in positive integers is $(x,y,z)=(2,2,2)$. Let $k\geq 1$ be an integer and $F_k=2{2k}+1$ be a Fermat number. In this paper, we show that Je\'{s}manowicz' conjecture is true for Pythagorean triples $(a,b,c)=(F_k-2,2{2{k-1}+1},F_k)$.