Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Numerical solution of the 2+1 Teukolsky equation on a hyperboloidal and horizon penetrating foliation of Kerr and application to late-time decays (1301.1591v1)

Published 8 Jan 2013 in gr-qc

Abstract: In this work we present a formulation of the Teukolsky equation for generic spin perturbations on the hyperboloidal and horizon penetrating foliation of Kerr recently proposed by Racz and Toth. An additional, spin-dependent rescaling of the field variable can be used to achieve stable, long-term, and accurate time-domain evolutions of generic spin perturbations. As an application (and a severe numerical test), we investigate the late-time decays of electromagnetic and gravitational perturbations at the horizon and future null infinity by means of 2+1 evolutions. As initial data we consider four combinations of (non-)stationary and (non-)compact-support initial data with a pure spin-weighted spherical harmonic profile. We present an extensive study of late time decays of axisymmetric perturbations. We verify the power-law decay rates predicted analytically, together with a certain "splitting" behaviour of the power-law exponent. We also present results for non-axisymmetric perturbations. In particular, our approach allows to study the behaviour of the late time decays of gravitational fields for nearly extremal and extremal black holes. For rapid rotation we observe a very prolonged, weakly damped, quasi-normal-mode phase. For extremal rotation the field at future null infinity shows an oscillatory behaviour decaying as the inverse power of time, while at the horizon it is amplified by several orders of magnitude over long time scales. This behaviour can be understood in terms of the superradiance cavity argument.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.