Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial Value Iteration Algorithms for Detrerminstic MDPs (1301.0583v1)

Published 12 Dec 2012 in cs.AI and cs.DS

Abstract: Value iteration is a commonly used and empirically competitive method in solving many Markov decision process problems. However, it is known that value iteration has only pseudo-polynomial complexity in general. We establish a somewhat surprising polynomial bound for value iteration on deterministic Markov decision (DMDP) problems. We show that the basic value iteration procedure converges to the highest average reward cycle on a DMDP problem in heta(n2) iterations, or heta(mn2) total time, where n denotes the number of states, and m the number of edges. We give two extensions of value iteration that solve the DMDP in heta(mn) time. We explore the analysis of policy iteration algorithms and report on an empirical study of value iteration showing that its convergence is much faster on random sparse graphs.

Citations (28)

Summary

We haven't generated a summary for this paper yet.