Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Value Iteration (1807.04920v3)

Published 13 Jul 2018 in cs.FL, cs.AI, and cs.CC

Abstract: Value iteration is a fundamental algorithm for solving Markov Decision Processes (MDPs). It computes the maximal $n$-step payoff by iterating $n$ times a recurrence equation which is naturally associated to the MDP. At the same time, value iteration provides a policy for the MDP that is optimal on a given finite horizon $n$. In this paper, we settle the computational complexity of value iteration. We show that, given a horizon $n$ in binary and an MDP, computing an optimal policy is EXP-complete, thus resolving an open problem that goes back to the seminal 1987 paper on the complexity of MDPs by Papadimitriou and Tsitsiklis. As a stepping stone, we show that it is EXP-complete to compute the $n$-fold iteration (with $n$ in binary) of a function given by a straight-line program over the integers with $\max$ and $+$ as operators.

Citations (11)

Summary

We haven't generated a summary for this paper yet.