Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Bouleau-Yor identity for a bi-fractional Brownian motion (1212.6347v1)

Published 27 Dec 2012 in math.PR and math.FA

Abstract: Let $B$ be a bi-fractional Brownian motion with indices $H\in (0,1),K\in (0,1]$, $2HK=1$ and let ${\mathscr L}(x,t)$ be its local time process. We construct a Banach space ${\mathscr H}$ of measurable functions such that the quadratic covariation $[f(B),B]$ and the integral $\int_{\mathbb R}f(x){\mathscr L}(dx,t)$ exist provided $f\in {\mathscr H}$. Moreover, the Bouleau-Yor identity $$ [f(B),B]t=-2{1-K}\int{\mathbb R}f(x){\mathscr L}(dx,t),\qquad t\geq 0, $$ holds for all $f\in {\mathscr H}$.

Summary

We haven't generated a summary for this paper yet.