Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The quadratic covariation for a weighted fractional Brownian motion (1603.01720v1)

Published 5 Mar 2016 in math.PR

Abstract: Let $B{a,b}$ be a weighted fractional Brownian motion with indices $a,b$ satisfying $a>-1,-1<b\<0,|b|\<1+a$. In this paper, motivated by the asymptotic property $$ E[(B^{a,b}_{s+\varepsilon}-B^{a,b}_s)^2] =O(\varepsilon^{1+b})\not\sim \varepsilon^{1+a+b}=E[(B^{a,b}_{\varepsilon})^2]\qquad (\varepsilon\to 0) $$ for all $s\>0$, we consider the generalized quadratic covariation $\bigl[f(B{a,b}),B{a,b}\bigr]{(a,b)}$ defined by $$ \bigl[f(B{a,b}),B{a,b}\bigr]{(a,b)}t=\lim{\varepsilon\downarrow 0}\frac{1+a+b}{\varepsilon{1+b}}\int_\varepsilon{t+\varepsilon} \left{f(B{a,b}_{s+\varepsilon}) -f(B{a,b}s)\right}(B{a,b}{s+\varepsilon}-B{a,b}_s)s{b}ds, $$ provided the limit exists uniformly in probability. We construct a Banach space ${\mathscr H}$ of measurable functions such that the generalized quadratic covariation exists in $L2(\Omega)$ and the generalized Bouleau-Yor identity $$ [f(B{a,b}),B{a,b}]{(a,b)}_t=-\frac1{(1+b){\mathbb B}(a+1,b+1)} \int_{\mathbb R}f(x){\mathscr L}{a,b}(dx,t) $$ holds for all $f\in {\mathscr H}$, where ${\mathscr L}{a,b}(x,t)=\int_0t\delta(B{a,b}_s-x)ds{1+a+b}$ is the weighted local time of $B{a,b}$ and ${\mathbb B}(\cdot,\cdot)$ is the Beta function.

Summary

We haven't generated a summary for this paper yet.