Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressed Sensing Based on Random Symmetric Bernoulli Matrix (1212.3799v1)

Published 16 Dec 2012 in cs.IT and math.IT

Abstract: The task of compressed sensing is to recover a sparse vector from a small number of linear and non-adaptive measurements, and the problem of finding a suitable measurement matrix is very important in this field. While most recent works focused on random matrices with entries drawn independently from certain probability distributions, in this paper we show that a partial random symmetric Bernoulli matrix whose entries are not independent, can be used to recover signal from observations successfully with high probability. The experimental results also show that the proposed matrix is a suitable measurement matrix.

Citations (9)

Summary

We haven't generated a summary for this paper yet.