Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 89 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 169 tok/s Pro
2000 character limit reached

Understanding (dis)similarity measures (1212.2791v1)

Published 12 Dec 2012 in cs.AI and cs.IR

Abstract: Intuitively, the concept of similarity is the notion to measure an inexact matching between two entities of the same reference set. The notions of similarity and its close relative dissimilarity are widely used in many fields of Artificial Intelligence. Yet they have many different and often partial definitions or properties, usually restricted to one field of application and thus incompatible with other uses. This paper contributes to the design and understanding of similarity and dissimilarity measures for Artificial Intelligence. A formal dual definition for each concept is proposed, joined with a set of fundamental properties. The behavior of the properties under several transformations is studied and revealed as an important matter to bear in mind. We also develop several practical examples that work out the proposed approach.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube