Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reasoning about Bayesian Network Classifiers (1212.2470v1)

Published 19 Oct 2012 in cs.LG, cs.AI, and stat.ML

Abstract: Bayesian network classifiers are used in many fields, and one common class of classifiers are naive Bayes classifiers. In this paper, we introduce an approach for reasoning about Bayesian network classifiers in which we explicitly convert them into Ordered Decision Diagrams (ODDs), which are then used to reason about the properties of these classifiers. Specifically, we present an algorithm for converting any naive Bayes classifier into an ODD, and we show theoretically and experimentally that this algorithm can give us an ODD that is tractable in size even given an intractable number of instances. Since ODDs are tractable representations of classifiers, our algorithm allows us to efficiently test the equivalence of two naive Bayes classifiers and characterize discrepancies between them. We also show a number of additional results including a count of distinct classifiers that can be induced by changing some CPT in a naive Bayes classifier, and the range of allowable changes to a CPT which keeps the current classifier unchanged.

Citations (46)

Summary

We haven't generated a summary for this paper yet.