Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new class of generative classifiers based on staged tree models (2012.13798v2)

Published 26 Dec 2020 in cs.AI, cs.LG, and stat.ML

Abstract: Generative models for classification use the joint probability distribution of the class variable and the features to construct a decision rule. Among generative models, Bayesian networks and naive Bayes classifiers are the most commonly used and provide a clear graphical representation of the relationship among all variables. However, these have the disadvantage of highly restricting the type of relationships that could exist, by not allowing for context-specific independences. Here we introduce a new class of generative classifiers, called staged tree classifiers, which formally account for context-specific independence. They are constructed by a partitioning of the vertices of an event tree from which conditional independence can be formally read. The naive staged tree classifier is also defined, which extends the classic naive Bayes classifier whilst retaining the same complexity. An extensive simulation study shows that the classification accuracy of staged tree classifiers is competitive with that of state-of-the-art classifiers and an example showcases their use in practice.

Citations (10)

Summary

We haven't generated a summary for this paper yet.