Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stratifications of finite directed categories and generalized APR tilting modules (1212.0896v2)

Published 4 Dec 2012 in math.RT and math.RA

Abstract: A finite directed category is a $k$-linear category with finitely many objects and an underlying poset structure, where $k$ is an algebraically closed field. This concept unifies structures such as $k$-linerizations of posets and finite EI categories, quotient algebras of finite-dimensional hereditary algebras, triangular matrix algebras, etc. In this paper we study representations of finite directed categories, discuss their stratification properties, and show the existence of generalized APR tilting modules for triangular matrix algebras under some assumptions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.