Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On some mean square estimates for the zeta-function in short intervals (1212.0660v2)

Published 4 Dec 2012 in math.NT

Abstract: Let $\Delta(x)$ denote the error term in the Dirichlet divisor problem, and $E(T)$ the error term in the asymptotic formula for the mean square of $|\zeta(1/2+it)|$. If $E*(t) = E(t) - 2\pi\Delta*(t/2\pi)$ with $\Delta*(x) = -\Delta(x) + 2\Delta(2x) - 1/2\Delta(4x)$ and we set $\int_0T E*(t)\,dt = 3\pi T/4 + R(T)$, then we obtain $$ \int_T{T+H}(E*(t))2\,dt \gg HT{1/3}\log3T $$ and $$ HT\log3T \ll \int_T{T+H}R2(t)\,dt \ll HT\log3T, $$ for $T{2/3+\epsilon}\le H \le T$.

Summary

We haven't generated a summary for this paper yet.