On some mean value results for the zeta-function and a divisor problem (1406.0604v1)
Abstract: Let $\Delta(x)$ denote the error term in the classical Dirichlet divisor problem, and let the modified error term in the divisor problem be $\Delta*(x) = -\Delta(x) + 2\Delta(2x) - \frac{1}{2}\Delta(4x)$. We show that $$ \int_T{T+H}\Delta*\bigl(\frac{t}{2\pi}\bigr)|\zeta(1/2+it)|2dt \;\ll\; HT{1/6}\log{7/2}T \quad(T{2/3+\varepsilon} \le H = H(T) \le T), $$ $$ \int_0T\Delta(t)|\zeta(1/2+it)|2dt \;\ll\; T{9/8}(\log T){5/2},$$ and obtain asymptotic formulae for $$ \int_0T{\Bigl(\Delta*\bigl(\frac{t}{2\pi}\bigr)\Bigr)}2 |\zeta(1/2+it)|2dt,\quad \int_0T{\Bigl(\Delta*\bigl(\frac{t}{2\pi}\bigr)\Bigr)}3|\zeta(1/2+it)|2dt. $$ The importance of the $\Delta*$-function comes from the fact that it is the analogue of $E(T)$, the error term in the mean square formula for $|\zeta(1/2+it)|2$. We also show, if $E*(T) := E(T) - 2\pi \Delta*(T/(2\pi))$, $$ \int_0T E*(t)Ej(t)|\zeta(1/2+it)|2dt \; \ll_{j,\varepsilon}\; T{7/6+j/4+\varepsilon}\quad(j= 1,2,3). $$