Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rationality of W-algebras: principal nilpotent cases (1211.7124v3)

Published 30 Nov 2012 in math.QA and math.RT

Abstract: We prove the rationality of all the minimal series principal W-algebras discovered by Frenkel, Kac and Wakimoto in 1992, thereby giving a new family of rational and C_2-cofinite vertex operator algebras. A key ingredient in our proof is the study of Zhu's algebra of simple W-algebras via the quantized Drinfeld-Sokolov reduction. We show that the functor of taking Zhu's algebra commutes with the reduction functor. Using this general fact we determine the maximal spectrums of the associated graded of Zhu's algebra of all the admissible affine vertex algebras as well.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)