Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

A Rigorous Derivation of the Equations for the Clamped Biot-Kirchhoff-Love Poroelastic plate (1211.6456v1)

Published 27 Nov 2012 in math.AP and physics.class-ph

Abstract: In this paper we investigate the limit behavior of the solution to quasi-static Biot's equations in thin poroelastic plates as the thickness tends to zero. We choose Terzaghi's time corresponding to the plate thickness and obtain the strong convergence of the three-dimensional solid displacement, fluid pressure and total poroelastic stress to the solution of the new class of plate equations. In the new equations the in-plane stretching is described by the 2D Navier's linear elasticity equations, with elastic moduli depending on Gassmann's and Biot's coefficients. The bending equation is coupled with the pressure equation and it contains the bending moment due to the variation in pore pressure across the plate thickness. The pressure equation is parabolic only in the vertical direction. As additional terms it contains the time derivative of the in-plane Laplacean of the vertical deflection of the plate and of the the elastic in-plane compression term.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.