Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multipliers of Dirichlet subspaces of the Bloch space (1211.5703v1)

Published 24 Nov 2012 in math.CV

Abstract: For $0<p<\infty $ we let $\mathcal Dp_{p-1}$ denote the space of those functions $f$ which are analytic in the unit disc $\mathbb D $ and satisfy $\int_\mathbb D (1-| z|)\sp {p-1}| f'(z)| \sp p\,dA(z)<\infty $. It is known that, whenever $p\neq q$, the only multiplier from $\mathcal Dp_{p-1} $ to $\mathcal Dq_{q-1} $ is the trivial one. However, if $X$ is a subspace of the Bloch space and $0<p\le q<\infty$, then $X \cap \mathcal Dp_{p-1}\subset X\cap \mathcal Dq_{q-1} $, a fact which implies that the space of multipliers $\M(\mathcal Dp_{p-1}\cap X, \mathcal Dq_{q-1} \cap X)$ is non-trivial. In this paper we study the spaces of multipliers $\M(\mathcal Dp_{p-1}\cap X, v\cap X)$ ($0<p,q<\infty $) for distinct classical subspaces $X$ of the Bloch space. Specifically, we shall take $X$ to be $H\infty $, $BMOA$ and the Bloch space $\mathcal B $.

Summary

We haven't generated a summary for this paper yet.