Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary multipliers of a family of Möbius invariant function spaces (1504.04338v1)

Published 16 Apr 2015 in math.CV

Abstract: For $1<p<\infty$ and $0<s<1$, let $\mathcal{Q}p_ s (\mathbb{T})$ be the space of those functions $f$ which belong to $ Lp(\mathbb{T})$ and satisfy [ \sup_{I\subset \mathbb{T}}\frac{1}{|I|s}\int_I\int_I\frac{|f(\zeta)-f(\eta)|p}{|\zeta-\eta|{2-s}}|d\zeta||d\eta|<\infty, ] where $|I|$ is the length of an arc $I$ of the unit circle $\mathbb{T}$ . In this paper, we give a complete description of multipliers between $\mathcal{Q}p_ s (\mathbb{T})$ spaces. The spectra of multiplication operators on $\mathcal{Q}p_ s (\mathbb{T})$ are also obtained.

Summary

We haven't generated a summary for this paper yet.